

Digitalisation and future hybrid energy systems in industry

Digital Energy Twin

Juergen Fluch Head of department "Industrial Systems"

The DIGITAL ENERGY TWIN

Optimised Operation and Design of Industrial Energy Systems

29.06.2022

The project is funded by the Austrian Climate- and Energy Fund within the programme "Energieforschung".

Megatrends

Industry 4.0

Digitalization

Big Data Clouds

Data security

- Productivity increases by up to 25%^{1,2,3}
- 50% of the world's larges companies use digital twins
- Guiding principles of Austria's digital roadmap

Sustainable and efficient energy supply with maximum product quality

1...IDC Futurescape 2018, 2...Marktforschungsunternehmen Gartner, 3...WECC Global PCB Production Report for 2015

Potential

60% of industrial process heating demand can be covered by energy efficiency measures and renewable energy technologies (SotA).

Energy efficiency:

 About 8–10% savings with payback period of 5 or less years ¹

Renewable energy:

 50% of industrial process heating demand covered by technologies as solar thermal, heat pumps, biomass and biogas²

60% NON-FOSSIL

Grey = Fossil energy carrier; Green = Renewable energy; Transparent = Energy efficiency

Quelle: 1. "Study on EE and Energy Savings Potential in Industry..." ICF International. 2015
2. Estimate developed based on several sources: "Process heat collectors..." Horta P. 2016; "Process heat in Industry, Suitable Technologies". Fraunhofer ISE presentation. 2017. "Potential for Solar Heat in Ind. Processes." Vannoni C. et al. 2008:

29.06.2022

Energy supply challenges AT&S

Portfolio Digital Energy Twin

DigitalEnergyTwin-Software for industrial energy systems

 Simplification und multiplication through standardization of the DigitalEnergyTwin workflow

- Data security and data management
 - Validation and standardized procedure

- Energy Manager 4.0
 - Augmented and Virtual Reality (AR/VR)

Digital Energy Twin (Modelling approach)

- Modelling paradigms
 - Physics-based
 - Data-driven based
- Validating and simplifying models using
 - Near-real-time data
 - Historic data
- Integrating optimizer applied for operation and integration of
 - energy efficiency measures
 - and renewable technologies

Modelling

Optimization

Data management and security

- Highly important within digitalization
- To obtain reliable data
- To ensure a smooth data exchange between DT and industrial process
- To fullfil high-level confidentiality requirements of the industry

Virtual und Augmented Reality

Content Management System*

*Organization and archiving of activities, processes and tools of digital information in their lifecycle

Outlook

- Development of an operating twin for energy relevant processes (demand) and necessary supply utilities
- Optimization as basis for decarbonizing the industry including real investments and multiplication within the company
- The methods and tools developed in this project are expected to be transferrable and adaptable to other industries

AEE – Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, Austria

Website: www.aee-intec.at Twitter: @AEE_INTEC

Jürgen Fluch

j.fluch@aee.at 0043 3112 5886 454

https://bit.ly/3KGBxdk

