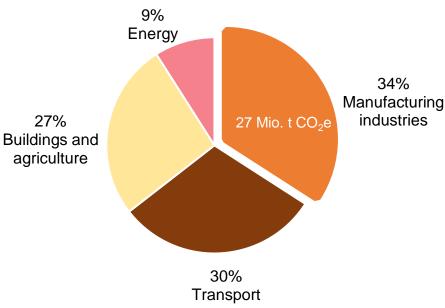

NEW ENERGY FOR INDUSTRY

The NEFI innovation network of science, technology providers and companies demonstrates a pathway towards the decarbonisation of industry


1/3 OF GHG EMISSIONS IN AUT FROM MANUFACTURING INDUSTRIES

Primary energy demand by sector^[1]

GHG-emissions by sector^[2]

¹⁾ Sejkora et al., "Exergy as Criteria for Efficient Energy Systems – A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exery Demand and Renewable Exergy Potential", Energies, 2020

MOTIVATION FOR SCENARIO DEVELOPMENT

ENERGY SCENARIOS CAN BE A VALUABLE TOOL FOR ATTAINING CLIMATE GOALS

Strong drivers:

- Industrial climate neutrality goals
- European Green Deal / Austrian government goals / etc.

Clear target.

Yet, the road is very much unclear!

Previous energy scenarios:

- End-energy resolution of industrial demands
- Industrial aggregate; no industrial subsector focus

THE NEFI SCENARIOS

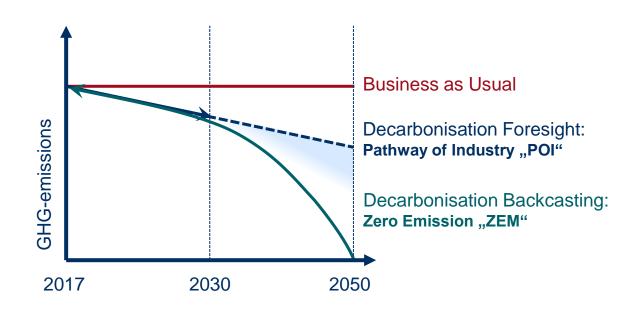
WHAT'S ON THE PLATE TODAY

- What balance border in industry is necessary for these scenarios?
- What scenario narratives were chosen?
- What technology groups constitute the road to climate neutrality?
- Core results

ENERGY AND EMISSIONS BALANCE OF INDUSTRY

THREE GHG-SOURCES EXIST

Transformation input


Mineral bound CO₂

Industrielle THG-Emissionen

THE NEFI SCENARIOS

THREE SCENARIOS OPEN UP A BANDWIDTH OF DEVELOPMENT POSSIBILITIES

CLASSIFICATION OF DECARBONISATION STRATEGIES

FOUR TECHNOLOGY FAMILIES CAN BE DISTINGUISHED

Electrification

- Heat pumps
- Stationary engines

Use of CO₂-neutral gases and biomass combustion

- Hydrogen
- Bio-CH₄ and synthetic CH₄
- Solid biomass

Carbon Capture

- Especially for the sequestration of geogenic emissions
- Requires additional energy

Circular Economy

- Increased use of end-of-life products
- Substitution of primary resources

CLASSIFICATION OF DECARBONISATION STRATEGIES

INITIAL FOCUS LIES ON THREE OPTIONS:

Electrification

- Heat pumps
- Stationary engines

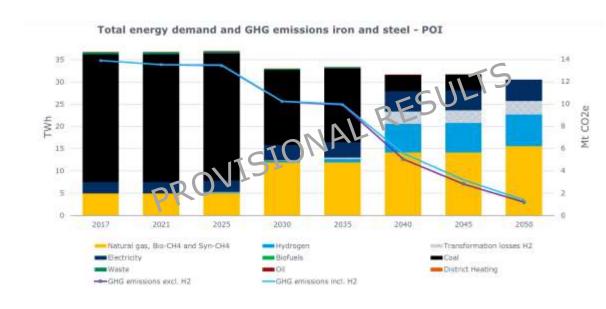
Use of CO₂-neutral gases and biomass combustion

- Hydrogen
- Bio-CH₄ and synthetic CH₄
- Solid biomass

Carbon Capture

- Especially for the sequestration of geogenic emissions
- Requires additional energy

Scenario Pathway of Industry


Exemplary results

IRON & STEEL

CH₄-BASED DIRECT REDUCTION AND EAF

- Increasing usage of CH₄-DR/EAF incl. 30% H₂ per unit
- Substitution of 29 TWh coal/coke with 22 TWh of green gases
- Electricity demand for electrolysis can sit in- or outside the industrial balance border

NON-METALLIC MINERALS

AMINE SCRUBBER REQUIRES ADDITIONAL ENERGY

- Carbon Capture by amine scrubbing
 - Readily available technology
- No investigation of further usage/storage after sequestration
- Required energy provided through heat pumps (@130°C)

Total energy demand and GHG emissions non-metallic minerals - POI

PULP, PAPER & PRINT

INTENSIFIED BIOMASS COMBUSTION

- Extension of current supply routes for biomass for combustion
- Retention of current plant structure
 - e.g. CHP-plants


Total energy demand and GHG emissions pulp, paper and print - POI 20 ¥ 15 10 5 0.0 2017 2030 2035 2040 2045 2050 Natural gas, Bio-CH4 and Syn-CH4 Add, electricty demand for hydrogen production District Heating →GHG emissions incl. H2.

MACHINERY

EXTENSIVE ELECTRIFICATION OF PROCESS HEAT

- Lower temperature levels provided by heat pumps
- Higher temperature levels (>150°C) provided by direct heat
- Energy efficiency cannot compensate fully for production increase (approx. 50%)

"PATHWAY OF INDUSTRY" SUMMARY

CO₂-NEUTRAL ENERGY SUPPLY IS KEY

- Two fuel-based decarbonisation solutions are visible
 - CO₂-neutral gases and biomass
 - Electrification
- GHG-emission reduction of 84% is possible (comp. to 2017)
- GHG-neutral supply of electricity and CO₂-neutral gases is key!
 - 50 TWh electricity: +92%
 - 90 TWh CO₂-neutral gases
 (>130 TWh of electricity, if provided through H₂)
 - 36 TWh solid biomass: +110%

NEW ENERGY FOR INDUSTRY

THANK YOU!